Modelo de tarifación para redistribuir la demanda en transporte urbano

caso Paraná

Autores/as

  • Juan Francisco Jaurena Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina.

DOI:

https://doi.org/10.64876/radi.v26.5

Palabras clave:

Gestión horaria, incentivos económicos, simulación estocástica, movilidad urbana, planificación tarifaria.

Resumen

Este trabajo analiza el impacto de una estrategia de tarifación mixta en el sistema de transporte público de la ciudad de Paraná, con el objetivo de redistribuir la demanda en horarios pico mediante incentivos económicos. Se empleó una metodología cuantitativa basada en datos del sistema SUBE y encuestas representativas, complementada con simulaciones estocásticas mediante el método de Monte Carlo. Los resultados evidencian que descuentos del 30% y 40% permiten reducir significativamente la cantidad de pasajeros en la hora pico sin generar nuevos picos en horarios adyacentes. Se identificó un segmento de usuarios con flexibilidad horaria dispuesto a modificar sus hábitos de viaje ante incentivos adecuados. La estrategia propuesta mejora la eficiencia operativa, reduce el hacinamiento y optimiza el uso de recursos, posicionándose como una herramienta viable para la planificación tarifaria en ciudades intermedias.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Albalate, D., & Fageda, X. (2019). Congestion, road safety, and the effectiveness of public policies in urban areas. Sustainability, 11(18), 5092. https://doi.org/10.3390/su11185092

Bosch, E., Luther, A. R., & Ihme, K. (2025). Travel experience in public transport: Experience sampling and cardiac activity data for spatial analysis. Scientific Data, 12, Article 633. https://doi.org/10.1038/s41597-025-04955-4

Broaddus, A., Litman, T., & Menon, G. (2009). Transportation demand management: Training document. Transportation in the New Millenium, 1-118. https://www.sutp.org/files/contents/documents/resources/H_Training-Material/GIZ_SUTP_TM_Transportation-Demand-Management_EN.pdf

Cervero, R. (1982). The transit pricing evaluation model: A tool for exploring fare policy options. Transportation Research Part A: General, 16(4), 313–323. https://doi.org/10.1016/0191-2607(82)90058-9

Cervero, R. (1998). The Transit Metropolis: A Global Inquiry. Island Press.

Ding, X., Hong, C., Wu, J., Zhao, L., Shi, G., Liu, Z., Hong, H., & Zhao, Z. (2023). Research on time-based fare discount strategy for urban rail transit peak congestion. Urban Rail Transit, 9(1), 352–367. https://doi.org/10.1007/s40864-023-00203-3

Drouet, L., Lallemand, C., Koenig, V., Viti, F., & Bongard-Blanchy, K. (2023). Uncovering factors influencing railway passenger experiences through love and breakup declarations. Applied Ergonomics, 111, Article 104030. https://doi.org/10.1016/j.apergo.2023.104030

Falavigna, C., & Hernandez, D. (2016). Assessing inequalities on public transport affordability in two Latin American cities: Montevideo (Uruguay) and Córdoba (Argentina). Transport Policy, 45, 145–155. https://doi.org/10.1016/j.tranpol.2015.09.011

Goodwin, P. B. (1992). A Review of New Demand Elasticities with Special Reference to Short and Long Run Effects of Price Changes. Journal of Transport Economics and Policy, 26(2), 155–169. http://www.jstor.org/stable/20052977

Guzmán, L. A., Gómez, S., & Moncada, C. A. (2020). Short run fare elasticities for Bogotá’s BRT system: Ridership responses to fare increases. Transportation, 47, 2581–2599. https://link.springer.com/article/10.1007/s11116-019-10034-6

Halvorsen, A., Koutsopoulos, H. N., Lau, S., Au, T., & Zhao, J. (2016). Reducing subway crowding: Analysis of an off-peak discount experiment in Hong Kong. Transportation Research Record, 2544(1), 38–46. https://doi.org/10.3141/2544-05

Jaurena, J. F., Diaz Arias, R. D., Franco, F., Lischet, S. M., & Hurani, R. A. (2022). Diseño de indicadores de gestión del transporte público de pasajeros a través de datos generados por el sistema SUBE: Caso de Estudio Ciudad Paraná. Ejes De Economía Y Sociedad. https://doi.org/10.33255/25914669/6109

Jaurena, J. F., Diaz Arias, R., Dorella, J., & Frattin, J. (2024). Estudio sobre Hábitos de Movilidad y Preferencias de Usuarios de Transporte Público de la Ciudad de Paraná (Entre Ríos). En XVII COINI 2024 – Congreso Internacional de Ingeniería Industrial – AACINI - UTN FRLP.

Jaurena, J. F., Díaz Arias, R., Elías, W., & Lambarri, J. (2023). Evaluación de la relación oferta-demanda en el sistema de transporte público de Paraná: Enfoque en la optimización y sostenibilidad de la movilidad. XVI COINI 2023 – Congreso Internacional de Ingeniería Industrial – AACINI - UTN FRSN.

Jaurena, J. F., Díaz Arias, R.; Alvarado, Mónica E.; Pagani, Laura B. (2025). Análisis de elasticidad precio de la demanda del transporte público en la ciudad de Paraná (2018-2024). Ejes De Economía Y Sociedad.

Liu, Y., & Charles, P. (2013). Spreading peak demand for urban rail transit through differential fare policy: a review of empirical evidence. En Australasian Transport Research Forum 2013 Proceedings (pp. 1–35). Australasian Transport Research Forum. https://eprints.qut.edu.au/65216/

MacLeod, KE, Kamruzzaman, L. y Musselwhite, C. (2022). Equidad en transporte y salud, inclusión y exclusión social. Journal of Transport & Health , 27 , 101543. https://doi.org/10.1016/j.jth.2022.101543

Nash, C. A. (1982). Economics of Public Transport. Longman.

Peer, S., Knockaert, J., & Verhoef, E. T. (2016). Train commuters’ scheduling preferences: Evidence from a large-scale peak avoidance experiment. Transportation Research Part B: Methodological, 83, 314–333. https://doi.org/10.1016/j.trb.2015.11.017

Saghian, Z., Esfahanipour, A., & Karimi, B. (2022). A novel dynamic fare pricing model based on fuzzy bi-level programming for subway systems with heterogeneous passengers. Computers & Industrial Engineering, 172, 108654. https://doi.org/10.1016/j.cie.2022.108654

UITP (International Association of Public Transport). (2017). Public Transport Trends 2017. Brussels: UITP. https://www.uitp.org/

Verbich, D., & El-Geneidy, A. (2017). Public transit fare structure and social vulnerability in Montreal, Canada. Transportation Research Part A: Policy and Practice, 96, 43–53. https://doi.org/10.1016/j.tra.2016.12.003

Vuchic, V. R. (2005). Urban Transit: Operations, Planning, and Economics. John Wiley & Sons.

Wang, Q., Schonfeld, P. M., Deng, L., Xu, G., & Ling, S. (2023). Optimization of differentiated fares and subsidies for different urban rail transit users. Computers & Industrial Engineering, 179, 109144. https://doi.org/10.1016/j.cie.2023.109144

Wang, Y., & Gao, Y. (2022). Travel satisfaction and travel well-being: Which is more related to travel choice behaviour in the post COVID-19 pandemic? Evidence from public transport travellers in Xi’an, China. Transportation Research Part A: Policy and Practice, 166, 218–233. https://doi.org/10.1016/j.tra.2022.10.003

White, P. R. (2016). Transporte público: su planificación, gestión y operación. Routledge. https://doi.org/10.4324/9781315675770

Xiao, L., Liao, J., Wu, S., Tian, Y., & Sun, J. (2024). Understanding the attitudes of travelers towards incentive-based travel demand management strategies in Suzhou, China. Travel Behaviour and Society, 35, 100752. https://doi.org/10.1016/j.tbs.2024.100752

Zhao, P., & Zhang, Y. (2019). The effects of metro fare increase on transport equity: New evidence from Beijing. Transport Policy, 74, 73–83. https://doi.org/10.1016/j.tranpol.2018.11.009

Descargas

Publicado

2025-12-27

Cómo citar

Jaurena, J. F. (2025). Modelo de tarifación para redistribuir la demanda en transporte urbano: caso Paraná. Revista Argentina De Ingeniería, 26, 5. https://doi.org/10.64876/radi.v26.5

Número

Sección

ARTÍCULOS