BLEVE. Estimación de distancias seguras basándose en variables de diseño

Authors

  • Romina Kraft Universidad Tecnológica Nacional. Facultad Regional Rosario. CAIMI Centro de Aplicaciones Informáticas y Modelado en Ingeniería. Argentina.
  • Patricia Mores Universidad Tecnológica Nacional. Facultad Regional Rosario. CAIMI Centro de Aplicaciones Informáticas y Modelado en Ingeniería. Argentina.
  • Nicolás Scenna Universidad Tecnológica Nacional. Facultad Regional Rosario. CAIMI Centro de Aplicaciones Informáticas y Modelado en Ingeniería. Argentina.

Keywords:

BLEVE, modelo simple, distancias seguras, variables de diseño/operativas

Abstract

Among the most hazardous accidental events are BLEVE. The serious consequences caused by the blast wave generated make their analysis crucial. The available models are complex in terms of the amount of input data and computational efforts required for their resolution. In this study, a simple to implement model for the straightforward estimation of safety distances between a explosion source and a receptor characterized by a specified vulnerability level is presented. This model is obtained by selecting suitable design variables and analysing their influence on the results provided by a mathematical model with theoretical foundation (reference model), formulating a single mathematical expression with parameters to be determined (simple model) and by solving an optimization problem in which the correlation coefficient resulting from the comparison of the simple model with the reference one is maximized. Finally, a very good performance of the proposed model is demonstrated, allowing the reliable obtaining of safety distances from the first stages of the design.

References

CCPS, Guidelines for Evaluating the Characteristics of Vapor Cloud Explosions, Flash Fires and BLEVE’s. New York: American Institute of Chemical Engineers, 1994.

A. M. Birk, F. Heymes, R. Eyssette, P. Lauret, L. Aprin, y P. Slangen, «Near-field BLEVE overpressure effects: the shock start model», Process Saf. Environ. Prot., vol. 116, pp. 727-736, 2018, doi: 10.1016/j.psep.2018.04.003.

A. M. Birk, C. Davison, y M. Cunningham, «Blast overpressures from medium scale BLEVE tests», J. Loss Prev. Process Ind., vol. 20, n.o 3, pp. 194-206, may 2007, doi: 10.1016/j.jlp.2007.03.001.

J. Casal y J. M. Salla, «Using liquid superheating energy for a quick estimation of overpressure in BLEVEs and similar explosions», J. Hazard. Mater., vol. 137, n.o 3, pp. 1321-1327, 2006, doi: 10.1016/j.jhazmat.2006.05.001.

E. Planas-Cuchi, J. M. Salla, y J. Casal, «Calculating overpressure from BLEVE explosions», J. Loss Prev. Process Ind., vol. 17, pp. 431-436, 2004, doi: 10.1016/j.jlp.2004.08.002.

R. W. Prugh, «Quantitative evaluation of “BLEVE” hazards», J Fire Prot Eng, vol. 3, n.o 1, pp. 9-24, 1991, doi: 10.1177/104239159100300102.

H. L. Brode, «Blast wave from a Spherical Charge», Phys. Fluids, vol. 2, n.o 2, pp. 217-229, 1959, doi: 10.1063/1.1705911.

D. A. Crowl, «Using Thermodynamic Availability to Determine the Energy of Explosion for Compressed Gases», PlantOper Prog, vol. 11, n.o 2, pp. 47-49, 1992, doi: 10.1002/prsb.720110206.

D. A. Crowl, «Using Thermodynamic Availability to Determine the Energy of Explosion», PlantOper Prog, vol. 10, n.o 3, pp. 136-142, 1991, doi: 10.1002/prsb.720100306.

J. M. Smith y H. C. Van Ness, Introduction to Chemical Engineering Thermodynamics, 5th ed. New York: McGraw-Hill, 1996.

CCPS, Guidelines for Vapor Cloud Explosion, Pressure Vessel Burst, BLEVE and Flash Fire Hazards., 2nd ed. New York: Wiley Company - American Institute of Chemical Engineers, 2010.

B. Hemmatian, E. Planas, y J. Casal, «Comparative analysis of BLEVE mechanical energy and overpressure modelling», Process Saf. Environ. Prot., vol. 106, pp. 138-149, feb. 2017, doi: 10.1016/j.psep.2017.01.007.

D. Laboureur, F. Heymes, E. Lapebie, J. M. Buchlin, y P. Rambaud, «BLEVE overpressure: Multiscale comparison of blast wave modeling», Process Saf. Prog., vol. 33, n.o 3, pp. 274-284, 2014, doi: 10.1002/prs.11626.

L. I. Sedov, A Course in Continuum Mechanics. Groningen: Wolters- Noordhoff, 1971.

L. I. Sedov, Similarity and Dimensional Methods in Mechanics. New York: Academic Press, 1959.

G. Taylor, «The formation of a blast wavw by a very intense explosion I: theorical discussion», Proc R Soc Math Phys Eng Sci, vol. 201, pp. 159-174, 1950.

G. Taylor, «The formation of a blast wave by a very intense explosion II, the atomic explosion of 1945», Proc R Soc Math Phys Eng Sci, vol. 201, pp. 175-186, 1950.

G. Reniers y V. Cozzani, «Domino Effects in the Process Industries Modeling, Prevention and Managing», 2013.

R. Bubbico y M. Marchini, «Assessment of an explosive LPG release accident: A case study», J. Hazard. Mater., vol. 155, n.o 3, pp. 558-565, jul. 2008, doi: 10.1016/j.jhazmat.2007.11.097.

D. Laboureur, F. Heymes, Lopebie, E., J. M. Buchlin, y P. Rambaud, «BLEVE Overpressure: Multiscale Comparison of Blast Wave Modeling.», Process Saf. Prog., vol. 33, n.o 3, pp. 274-284, 2014, doi: 10.1002/prs.

E. Planas, E. Pastor, J. Casal, y J. M. Bonilla, «Analysis of the boiling liquid expanding vapor explosion (BLEVE) of a liquefied natural gas road tanker: The Zarzalico accident.», J. Loss Prev. Process Ind., vol. 34, pp. 127-138, 2015, doi: https://doi.org/10.1016/j.jlp.2015.01.026.

B. Hemmatian, J. Casal, y E. Planas, «A new procedure to estimate BLEVE overpressure», Process Saf. Environ. Prot., vol. 111, pp. 320-325, oct. 2017, doi: 10.1016/j.psep.2017.07.016.

B. Hemmatian, E. Planas-Cuchi, y J. Casal, «Analysis of Methodologies and Uncertainties in the Prediction of BLEVE Blast.», Chem. Eng. Trans., vol. 36, pp. 541-546, 2014, doi: 10.3303/CET1436091.

B. Hemmatian, J. Casal, E. Planas, B. Hemmatian, y D. Rashtchian, «Prediction of BLEVE mechanical energy by implementation of artificial neural network», J. Loss Prev. Process Ind., vol. 63, pp. 1-8, 2020, doi: https://doi.org/10.1016/j.jlp.2019.104021.

R. A. Ogle, J. C. Ramirez, y S. A. Smyth, «Calculating the explosion energy of a boiling liquid expanding vapor explosion using exergy analysis», Process Saf. Prog., vol. 31, n.o 1, pp. 51-54, 2012, doi: 10.1002/prs.10465.

B. Hemmatian, J. Casal, E. Planas, y D. Rashtchian, «BLEVE: The case of water and a historical survey», J. Loss Prev. Process Ind., vol. 57, pp. 231-238, ene. 2019, doi: 10.1016/j.jlp.2018.12.001.

TNO, Methods for the Calculation of Physical Effects - due to releases of hazardous materials (liquids and gases)- «Yellow Book»: CPR 14E, 3rd ed. The Hague: Committe for the Prevention of Disasters, 2005.

V. Cozzani, G. Gubinelli, y E. Salzano, «Escalation thresholds in the assessment of domino accidental events», J. Hazard. Mater., vol. 129, pp. 1-21, 2006, doi: https://doi.org/10.1016/j.jhazmat.2005.08.012.

D. M. Johnson, M. J. Pritchard, y M. J. Wickens, «Large scale experimental study of BLEVE. Contract report on CEC cofunded research project.», Contract report 15367, 1991.

S. Mannan, Lees’ Loss Prevention in the Process Industries - Hazard Identification, Assessment and Control, 4th Ed., vol. 1, 3 vols. Oxford, UK: Elsevier, 2012.

N. Alileche, D. Olivier, L. Estel, y V. Cozzani, «Analysis of domino effect in the process industry using the event tree method.», Saf Sci, vol. 97, pp. 10-19, 2017, doi: https://doi.org/10.1016/j.ssci.2015.12.028.

French ministerial decree, «Arrêté du 29 septembre 2005». J. Off. République Française. NOR: DEVP0540371A, 2005. [En línea]. Disponible en: http://legifrance.gouv.fr/eli/arrete/2005/9/ 29/DEVP0540371A/jo/texte

N. Alileche, V. Cozzani, G. Reniers, y L. Estel, «Thresholds for domino effects and safety distances in the process industry: A review of approaches and regulations», Reliab Eng Syst Saf, vol. 143, pp. 74-84, 2015, doi: https://doi.org/10.1016/j.ress.2015.04.007.

E. Planas, J. Arnaldos, B. Silvetti, A. Vallée, y J. Casal, «A Risk Severity Index for industrial plants and sites», J. Hazard. Mater., vol. 130, n.o 3, pp. 242-250, 2006, doi: https://doi.org/10.1016/j.jhazmat.2005.07.015.

I. Sellami, R. Nait-Said, K. Chetehouna, C. de Izarra, y F. Zidani, «Quantitative consequence analysis using Sedov-Taylor blast wave model. Part II: Case study in an Algerian gas industry», Process Saf. Environ. Prot., vol. 116, pp. 771-779, 2018, doi: https://doi.org/10.1016/j.psep.2018.02.003.

Z. Török, N. Ajtai, A. T. Turcu, y A. Ozunu, «Comparative consequence analysis of the BLEVE phenomena in the context on Land Use Planning; Case study: The Feyzin accident», Process Saf. Environ. Prot., vol. 89, pp. 1-7, 2011, doi: https://doi.org/10.1016/j.psep.2010.08.003.

V. Cozzani y E. Salzano, «The quantitative assessment of domino effects caused by overpressure. Part I: Probit models.», J. Hazard. Mater., vol. 107, pp. 67-80, 2004, doi: 10.1016/j.jhazmat.2003.09.013.

OGP, «Vulnerability of plant/structure». Report No. 434-14.1, 2010.

J. Devore, Probability and Statistics for Engineering and the Sciences., 8th Edition. Boston, USA: Brooks/Cole Cengage Learning, 2012.

T. O. Kvälseth, «Cautionary Note about R2», Am. Stat., vol. 39, n.o 4, pp. 279-285, 1985, doi: 10.1080/00031305.1985.10479448.

A. Drud, «CONOPT - A Large- Scale GRG Code», ORSA J. Comput., vol. 6, n.o 2, pp. 207-216, 1994, doi: https://doi.org/10.1287/ijoc.6.2.207.

B. Hemmatian, «Contribution to the study of Boiling Liquid Expanding Vapor Explosions and their mechanical effects.», Universidad Politécnica de Catalunya, Barcelona, España, 2016.

B. Hemmatian, J. Casal, y E. Planas, «Essential Points in the Emergency Management in Transport Accidents which Can Lead to a BLEVE-Fireball.», Chem. Eng. Trans., vol. 57, pp. 439-444, 2017, doi: 10.3303/CET1757074.

Published

2022-11-30

How to Cite

Kraft, R., Mores, P., & Scenna, N. (2022). BLEVE. Estimación de distancias seguras basándose en variables de diseño. Revista Argentina De ingeniería, 20, 67–74. Retrieved from https://radi.org.ar/index.php/radi/article/view/121

Issue

Section

ARTÍCULOS