Análisis de la Cinética de Difusión en Hidrogeles sintetizados mediante Radiación Gamma

Authors

  • Paola Andrea Bustamante  Centro Atómico Ezeiza. Departamento Procesos por Radiación. Laboratorio de Biotecnología. Argentina.
  • Natalia Santoro Centro Atómico Ezeiza. Departamento Procesos por Radiación. Laboratorio de Materiales Poliméricos. Argentina.
  • Nazarena Ciavaro Centro Atómico Ezeiza. Departamento Procesos por Radiación. Laboratorio de Materiales Poliméricos. Argentina.
  • María Carolina Anessi Centro Atómico Ezeiza. Departamento Procesos por Radiación. Laboratorio de Biotecnología. Argentina.

Keywords:

hidrogel, hinchamiento, mecanismos de difusión, radiación gamma

Abstract

Hydrogels are cross-linked polymeric networks, which have the ability to change their volume depending on their environment. They have several applications; one of them is as a drug delivery system, which involves the hydration and dehydration of the material. Therefore, in this work we carried out a kinetics and diffusion mechanisms analysis, which occur in hydrogels during these processes. The hydrogels were made by using gamma radiation at several absorbed doses. Then, we performed swelling and dehydration tests that were used to calculate the swelling and dehydration percentages, respectively, as well as the diffusion coefficient and the diffusional exponent. The results showed that as the dose necessary to obtain the crosslinks increased, the swelling and dehydration capacity of the matrix as well as the diffusion coefficient decreased. The kinetic analysis showed the hydrogels of 25 kGy have anomalous diffusion mechanism, while those 30 kGy and 35 kGy show the diffusion Fickian mechanism. In conclusion, these assays allowed us to understand the kinetic performance of the polymeric matrix / solvent system at different absorbed doses in order to consider these mechanisms when different active ingredients are used

References

Hoffman, A. (2012). Hydrogels for biomedical applications,” Adv. Drug Deliv. Rev., vol. 64, 18–23.

Rosiak, J. M. (2002). Radiation formation of hydrogels for biomedical application. Radiation synthesis and modification of polymers for biomedical applications. IAEA TECDOC-1324, 5. 47.

Echeverri, C. E. (2009). Síntesis y caracterización de hidrogeles de alcohol poli vinílico por la técnica de congelamiento/descongelamiento para aplicaciones médicas. Rev. EIA, vol. 12.

Crescenzi, V. (2007). Novel hydrogels via click chemistry: synthesis and potential biomedical applications. Biomacromolecules, 8(6), 1844-1850.

Sakurada, Y; Ikada, I. (1961). Effects of cobalt-60 gamma radiation on poly (vinyl alcohol) (III): Effects of gamma radiation on water-swollen films and aqueous solutions. Special issue on physical, chemical and biological effects of gamma radiation, II.

Rosiak, P.; Ulański, J. (1999). Synthesis of hydrogels by irradiation of polymers in aqueous solution. Radiat. Phys. Chem., 55(2), 139–151.

Danno, A. (1958). Gel formation of aqueous solution of polyvinyl alcohol irradiated by gamma rays from cobalt-60. J. Phys. Soc. Japan, 13(7), 722–727.

Vashist, S.; Vashist, A.; Gupta, A.; Ahmad Y.; Ahmad K. (2014). Recent advances in hydrogel based drug delivery systems for the human body. J. Mater. Chem. B, 2(2), 147–166.

Peppas, R.; Korsmeyer, N. (1987). Dynamically swelling hydrogels in controlled release applications. Hydrogels Med. Pharm, 3, 109–136.

Sáez, A.; Hernáez, V.; Sanz. (2004) Mecanismos de liberación de fármacos desde materiales polímeros. Rev. Iberoam. Polímeros, 5(1), 55–70.

Ritger, N; Peppas, P. (1987). A simple equation for description of solute release I. Fickian and non fickian release from non swellable devices in the form of slabs, spheres, cylinders or discs. J. Control. Release, 5(1), 23–36.

Singh, S.; Chauhan, B. Kumar, N. (2008). Radiation crosslinked psyllium and polyacrylic acid based hydrogels for use in colon specific drug delivery. Carbohydr. Polym, 73(3), 446–455.

Jones, L.; May, C.; Nazar, L.; Simpson, T. (2002). In vitro evaluation of the dehydration characteristics of silicone hydrogel and conventional hydrogel contact lens materials. Contact Lens and Anterior Eye, 25(3),147-156.

Ritger, N.; Peppas, P. (1987). A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J. Control. release, 5(1), 37- 42.

Benítez, B.; Lárez Velásquez, J.; Rojas de Gáscue, C. (2015). Cinética de absorción y transporte del agua en hidrogeles sintetizados a partir de acrilamida y anhídrido maleico. Rev. Latinoam. Metal. y Mater., 35(2), 242–253.

Irmukhametova, V.; Mun, G.; Khutoryanskiy, G. (2020). Hydrogel Dressings, Ther. Dressings Wound Heal. Appl., 185–207.

Caló, V.; Khutoryanskiy, V. (2015) Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J., 65, 252–267.

Brandl, F. (2010). Hydrogel based drug delivery systems: comparison of drug diffusivity and release kinetics. J. Control. Release, 142(2), 221–228.

Peppas, N. (1997). Hydrogels and drug delivery,” Curr. Opin. Colloid Interface Sci., 2(5), 531–537.

Published

2022-11-30

How to Cite

Bustamante, P. A., Santoro, N., Ciavaro, N., & Anessi, M. C. (2022). Análisis de la Cinética de Difusión en Hidrogeles sintetizados mediante Radiación Gamma. Revista Argentina De ingeniería, 20, 40–45. Retrieved from https://radi.org.ar/index.php/radi/article/view/117

Issue

Section

ARTÍCULOS