Determinación de pesticidas utilizados en cítricos. Optimización de la técnica extractiva
Palabras clave:
pesticidas, naranja, QuEChERS, GC-MSResumen
Se optimizó un método extractivo de pesticidas, para determinar imazalil, etión y malatión en naranjas, mediante cromatografía gaseosa acoplada a espectrometría de masas. Se tomó como base el método QuEChERS modificado. Se ensayaron diferentes solventes de extracción y reconstitución, así como adsorbentes. Se probó la combinación de acetonitrilo, etilacetato, metanol y hexano como solventes de extracción y reconstitución y la combinación de PSA, C18, C8, carbón activado, quitosano, diol y florisil como adsorbentes en la etapa de clean-up. Finalmente, se evaporó el solvente de extracción hasta sequedad para ser reconstituido en 0,5 ml de solvente orgánico. La mayor respuesta cromatográfica se obtuvo utilizando etilacetato como solvente de extracción, hexano como solvente de reconstitución y 0,5 g de florisil como adsorbente. Se obtuvo una buena linealidad, con valores de R2>0,99 en todos los casos, desviaciones estándar relativas menores al 10% y porcentajes de recuperación entre 85% y 114%.
Citas
Bonales-Revuelta, J., Musule, R., Navarro-Pineda, F. S., & García, C. A. (2022). Evaluating the environmental performance of orange production in Veracruz, Mexico: A life cycle assessment approach. Journal of Cleaner Production, 343, 131002. https://doi.org/10.1016/j.jclepro.2022.131002
FoodData Central. (n.d.). Retrieved 26 September 2023, from https://fdc.nal.usda.gov
Federcitrus. (2020). Estadisticas - Federcitrus. https://www.federcitrus.org/estadisticas/
Feng, S., Zheng, S., Chen, Y., Lin, M., Hung, Y.-C., Chen, Y., & Lin, H. (2023). Effects of acidic electrolyzed-oxidizing water treatment on the postharvest physiology, storability, and quality properties of navel orange fruit. Scientia Horticulturae, 321, 112377.https://doi.org/10.1016/j.scienta.2023.112377
Gu, Q., Gao, X., Zhou, Q., Li, Y., Li, G., & Li, P. (2023). Characterization of soluble dietary fiber from citrus peels (Citrus unshiu), and its antioxidant capacity and beneficial regulating effect on gut microbiota. International Journal of Biological Macromolecules,
Pan, H., Xia, Q., Li, H., Wang, Y., Shen, Z., Wang, Y., Li, L., Li, X., Xu, H., Zhou, Z., & Yang, S. (2022). Direct production of biodiesel from crude Euphorbia lathyris L. Oil catalyzed by multifunctional mesoporous composite materials. Fuel, 309. https://doi.org/10.1016/J.FUEL.2021.122172
Moulehi, I., Bourgou, S., Ourghemmi, I., & Tounsi, M. S. (2012). Variety and ripening impact on phenolic composition and antioxidant activity of mandarin (Citrus reticulate Blanco) and bitter orange (Citrus aurantium L.) seeds extracts. Industrial Crops and Products, 39(1), 74–80. https://doi.org/10.1016/J.INDCROP.2012.02.013
Sousa, M. C., Marinho, C. S., Silva, M. P. S., Carvalho, W. S. G., Amaral, B. D., Assis-Gomes, M. M., Rodrigues, W. P., & Campostrini, E. (2019). Effects of grafting and gradual rootstock substitution on gas exchanges of orange seedlings under high atmospheric evaporative demand. Scientia Horticulturae, 247, 67–74. https://doi.org/10.1016/j.scienta.2018.12.011
Tang, H., Sun, Q., Huang, J., Wen, G., Han, L., Wang, L., Zhang, Y., Dong, M., & Wang, W. (2023). Residue behaviors, degradation, processing factors, and risk assessment of pesticides in citrus from field to product processing. Science of The Total Environment, 897, 165321.
Al-Nasir, F. M., Jiries, A. G., Al-Rabadi, G. J., Alu’datt, M. H., Tranchant, C. C., Al-Dalain, S. A., Alrabadi, N., Madanat, O. Y., & Al-Dmour, R. S. (2020). Determination of pesticide residues in selected citrus fruits and vegetables cultivated in the Jordan Valley. LWT, 123, 109005. https://doi.org/10.1016/j.lwt.2019.109005
Souza, M. C. O., Cruz, J. C., Cesila, C. A., Gonzalez, N., Rocha, B. A., Adeyemi, J. A., Nadal, M., Domingo, J. L., & Barbosa, F. (2023). Recent trends in pesticides in crops: A critical review of the duality of risks-benefits and the Brazilian legislation issue. Environmental Research, 228, 115811. https://doi.org/10.1016/J.ENVRES.2023.115811
Jin, C., Weng, Y., Zhang, Y., Bao, Z., Yang, G., Fu, Z., & Jin, Y. (2021). Propamocarb exposure has the potential to accelerate the formation of atherosclerosis in both WT and ApoE−/− mice accompanied by gut microbiota dysbiosis. Science of The Total Environment, 800, 149602. https://doi.org/10.1016/j.scitotenv.2021.149602
Jin, C., Yuan, X., Wang, C., Fu, Z., & Jin, Y. (2021). Maternal exposure to imazalil disrupts intestinal barrier and bile acids enterohepatic circulation tightly related IL-22 expression in F0, F1 and F2 generations of mice. Journal of Hazardous Materials, 403, 123668. https://doi.org/10.1016/j.jhazmat.2020.123668
Wu, S., Luo, T., Wang, S., Zhou, J., Ni, Y., Fu, Z., & Jin, Y. (2018). Chronic exposure to fungicide propamocarb induces bile acid metabolic disorder and increases trimethylamine in C57BL/6J mice. Science of The Total Environment, 642, 341–348. https://doi.org/10.1016/j.scitotenv.2018.06.084
Pérez-Indoval, R., & Romero-López, R. (2024). Assessment of pesticide contamination in groundwater bodies in the Jucar River Basin (Spain) and its spatial distribution. Groundwater for Sustainable Development, 25, 101118. https://doi.org/10.1016/J.GSD.2024.101118
Fares, N. V., Hassan, Y. A. A., Hussein, L. A., & Ayad, M. F. (2021). Determination of fungicides' residues and their degradation kinetics in orange tree fruits using liquid chromatography – Tandem mass spectrometry coupled with QuEChERS method. Microchemical Journal, 168, 106376. https://doi.org/10.1016/J.MICROC.2021.106376
Han, L., Xu, H., Wang, Q., Liu, X., Li, X., Wang, Y., Nie, J., Liu, M., Ju, C., & Yang, C. (2023). Deciphering the degradation characteristics of the fungicides imazalil and penflufen and their effects on soil bacterial community composition, assembly, and functional profiles. Journal of Hazardous Materials, 460, 132379. https://doi.org/10.1016/j.jhazmat.2023.132379
Guo, W., Engelman, B. J., Haywood, T. L., Blok, N. B., Beaudoin, D. S., & Obare, S. O. (2011). Dual fluorescence and electrochemical detection of the organophosphorus pesticides—Ethion, malathion and fenthion. Talanta, 87(1), 276–283. https://doi.org/10.1016/J.TALANTA.2011.10.015
de Freitas, J. F., Ribeiro de Queiroz, M. E. L., de Oliveira, A. F., de Paulo Ribeiro, L., Salvador, D. V., Miranda, L. D. L., Alves, R. R., & Rodrigues, A. A. Z. (2023). Evaluation of imazalil dissipation/migration in postharvest papaya using low-temperature partition extraction and GC–MS analysis. Food Chemistry, 418, 135969. https://doi.org/10.1016/j.foodchem.2023.135969
Boberg, J., Johansson, H. K. L., Franssen, D., Draskau, M. K., Christiansen, S., Cramer, J., Pedersen, M., Parent, A. S., & Svingen, T. (2023). Exposure to the pesticides linuron, dimethomorph and imazalil alters steroid hormone profiles and gene expression in developing rat ovaries. Toxicology Letters, 373, 114–122. https://doi.org/10.1016/J.TOXLET.2022.11.010
Senasa | Argentina.gob.ar. (n.d.). Retrieved 13 April 2024, from https://www.argentina.gob.ar/senasa
FAO publications catalogue 2023. (2023). FAO Publications Catalogue 2023. https://doi.org/10.4060/CC7285EN
Rizzetti, T. M., Kemmerich, M., Martins, M. L., Prestes, O. D., Adaime, M. B., & Zanella, R. (2016). Optimization of a QuEChERS based method by means of central composite design for pesticide multiresidue determination in orange juice by UHPLC–MS/MS. Food Chemistry, 196, 25–33. https://doi.org/10.1016/j.foodchem.2015.09.010
Del Castillo, M. L. R., Rodriguez-Valenciano, M., De La Peña Moreno, F., & Blanch, G. P. (2012). Evaluation of pesticide residue contents in fruit juice by solid-phase microextraction and multidimensional gas chromatography coupled with mass spectrometry. Talanta, 89, 77–83. https://doi.org/10.1016/J.TALANTA.2011.11.062
Farajzadeh, M. A., & Afshar Mogaddam, M. R. (2016). Acid–base reaction-based dispersive liquid–liquid microextraction method for extraction of three classes of pesticides from fruit juice samples. Journal of Chromatography A, 1431, 8–16. https://doi.org/10.1016/J.CHROMA.2015.12.059
Fernandes, V. C., Domingues, V. F., Mateus, N., & Delerue-Matos, C. (2011). Determination of Pesticides in Fruit and Fruit Juices by Chromatographic Methods. An Overview. Journal of Chromatographic Science, 49(9), 715–730. https://doi.org/10.1093/CHRSCI/49.9.715
Shamsipur, M., Yazdanfar, N., & Ghambarian, M. (2016). Combination of solid-phase extraction with dispersive liquid–liquid microextraction followed by GC–MS for determination of pesticide residues from water, milk, honey and fruit juice. Food Chemistry, 204, 289–297. https://doi.org/10.1016/J.FOODCHEM.2016.02.090
Anastassiades, M., Lehotay, S. J., Štajnbaher, D., & Schenck, F. J. (2003). Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and “Dispersive Solid-Phase Extraction” for the Determination of Pesticide Residues in Produce. Journal of AOAC INTERNATIONAL, 86(2), 412–431. https://doi.org/10.1093/JAOAC/86.2.412
Du, P., Liu, X., Gu, X., Dong, F., Xu, J., Kong, Z., Wu, Y., Zhu, Y., Li, Y., & Zheng, Y. (2013). Rapid residue analysis of pyriproxyfen, avermectins and diflubenzuron in mushrooms by ultra-performance liquid chromatography coupled with tandem mass spectrometry. Analytical Methods, 5(23), 6741–6747. https://doi.org/10.1039/C3AY41074A
Liu, Z., Jia, F., Wang, W., Gao, F., Liu, P., Liu, Y., & Yin, J. (2014). A highly efficient extraction, separation and detection method for pyrethroids in pork using the interaction between pyrethroids and protein. Analytical Methods, 6(5), 1353–1358. https://doi.org/10.1039/C3AY40258D
Hou, X., Han, M., Dai, X., Yang, X., & Yi, S. (2013). A multi-residue method for the determination of 124 pesticides in rice by modified QuEChERS extraction and gas chromatography–tandem mass spectrometry. Food Chemistry, 138(2–3), 1198–1205. https://doi.org/10.1016/J.FOODCHEM.2012.11.089
Medina, M. B., Munitz, M. S., & Resnik, S. L. (2019). Pesticides in randomly collected rice commercialised in Entre Ríos, Argentina. Https://Doi.Org/10.1080/19393210.2019.1617791, 12(4), 252–258. https://doi.org/10.1080/19393210.2019.1617791
Nguyen, T. D., Yun, M. Y., & Lee, G. H. (2009). A Multiresidue Method for the Determination of 118 Pesticides in Vegetable Juice by Gas Chromatography−Mass Spectrometry and Liquid Chromatography−Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry, 57(21), 10095–10101. https://doi.org/10.1021/JF902712V
Romero-González, R., Frenich, A. G., & Vidal, J. L. M. (2008). Multiresidue method for fast determination of pesticides in fruit juices by ultra performance liquid chromatography coupled to tandem mass spectrometry. Talanta, 76(1), 211–225. https://doi.org/10.1016/J.TALANTA.2008.02.041
Tran, K., Eide, D., Nickols, S. M., Cromer, M. R., Sabaa-Srur, A., & Smith, R. E. (2012). Finding of pesticides in fashionable fruit juices by LC–MS/MS and GC–MS/MS. Food Chemistry, 134(4), 2398–2405. https://doi.org/10.1016/J.FOODCHEM.2012.04.034
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.