Baterías de iones sodio

una alternativa competitiva a las de iones litio

Autores/as

  • Henry Michel Zelada Romero Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Energía. Grupo Minerales Estratégicos (MinEs). Buenos Aires; Argentina.
  • Cristina Vázquez Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Energía. Grupo Minerales Estratégicos (MinEs). Buenos Aires; Argentina.

Palabras clave:

Baterías de iones de sodio, materiales de electrodos, electrolitos, almacenamiento de energía sostenible, cátodos y ánodos

Resumen

El creciente interés por soluciones sostenibles y eficientes para el almacenamiento de energía ha destacado el potencial de las baterías de iones sodio (SIB) como una alternativa complementaria a las baterías de iones litio (LIB). El Grupo Minerales Estratégicos (MinEs) de la Facultad de Ingeniería de la Universidad de Buenos Aires (FIUBA) encaró el desafío de investigar este tipo de baterías. Se estudiaron los materiales utilizados en los electrodos y electrolitos, destacando las propiedades, ventajas y desafíos de los cátodos, como los óxidos de sodio en capas, compuestos polianiónicos y análogos del azul de Prusia, así como de los ánodos, incluidos los materiales carbonosos y formadores de aleaciones y los diferentes tipos de electrolitos líquidos, sólidos y poliméricos. A pesar de los retos técnicos, como la estabilidad cíclica y la densidad de energía, las SIB ofrecen prometedoras oportunidades para un almacenamiento energético sostenible mediante el desarrollo de materiales y tecnologías avanzadas.

Citas

Tarascon, J.M. (2020). Na-ion versus Li-ion Batteries: Complementarity Rather than Competitiveness. Joule, 4 (8), 1616-1620. https://doi.org/10.1016/j.joule.2020.06.003.

Yu, T.; Li, G.; Duan, Y.; Wu, Y.; Zhang, T.; Zhao, X.; Luo, M.; Liu, Y. (2023). The research and industrialization progress and prospects of sodium ion battery. Journal of Alloys and Compounds, 958, 170486. https://doi.org/10.1016/j.jallcom.2023.170486.

Eftekhari, A.; Kim, D.W. (2018). Sodium-ion batteries: New opportunities beyond energy storage by lithium. Journal of Power Sources, 395, 336-348. https://doi.org/10.1016/j.jpowsour.2018.05.089.

Nagmani; Pahari, D.; Verma, P.; Puravankara, S. (2022). Are Na-ion batteries nearing the energy storage tipping point? – Current status of non-aqueous, aqueous, and solid-sate Na-ion battery technologies for sustainable energy storage. Journal of Energy Storage, 56 (A), 105961. https://doi.org/10.1016/j.est.2022.105961.

Kumar, A.; Nagmani; Puravankara, S. (2022). Symmetric sodium-ion batteries- materials, mechanisms, and prospects. Materials Today Energy, 29, 101115. https://doi.org/10.1016/j.mtener.2022.101115.

Zhang, W.; Zhang, F.; Ming, F.; Alshareef, H.N. (2019). Sodium-ion battery anodes: Status and future trends. EnergyChem, 1 (2), 100012. https://doi.org/10.1016/j.enchem.2019.100012.

Liu, Q.; Hu, Z.; Zou, C.; Jin, H.; Wang, S.; Li, L. (2021). Structural engineering of electrode materials to boost high-performance sodium-ion batteries. Cell Reports Physical Science, 2(9), 100551. https://doi.org/10.1016/j.xcrp.2021.100551.

Li, H.; Zhang, X.; Zhao, Z.; Hu, Z.; Liu, X.; Yu, G. (2020). Flexible sodium-ion based energy storage devices: Recent progress and challenges. Energy Storage Materials, 26, 83-104. https://doi.org/10.1016/j.ensm.2019.12.037.

Mamoor, M.; Li, Y.; Wang, L.; Jing, Z.; Wang, B.; Qu, G.; Kong, L.; Li, Y.; Guo, Z.; Xu, L. (2023). Recent progress on advanced high energy electrode materials for sodium ion batteries. Green Energy and Resources, 1(3), 100033. https://doi.org/10.1016/j.gerr.2023.100033.

[

Bai, H.; Song, Z. (2023). Lithium-ion battery, sodium-ion battery, or redox-flow battery: A comprehensive comparison in renewable energy systems. Journal of Power Sources, 580, 233426. https://doi.org/10.1016/j.jpowsour.2023.233426.

Hasa, I.; Mariyappan, S.; Saurel, D.; Adelhelm, P.; Koposov, A.Y.; Masquelier, C.; Croguennec, L.; Casas-Cabanas, M. (2021). Challenges of today for Na-based batteries of the future: From materials to cell metrics. Journal of Power Sources, 482, 228872. https://doi.org/10.1016/j.jpowsour.2020.228872.

Tomboc, G.M.; Wang, Y.; Wang, H.; Li, J.; Lee, K. (2021). Sn-based metal oxides and sulfides anode materials for Na ion battery. Energy Storage Materials, 39, 21-44. https://doi.org/10.1016/j.ensm.2021.04.009.

Li, M.; Du, Z.; Khaleel, M.A.; Belharouak, I. (2020). Materials and engineering endeavors towards practical sodium-ion batteries. Energy Storage Materials, 25, 520-536. https://doi.org/10.1016/j.ensm.2019.09.030.

Liang, J.; Wei, C.; Huo, D.; Li, H. (2024). Research progress on modification and application of two-dimensional anode materials for sodium ion batteries. Journal of Energy Storage, 85, 111044. https://doi.org/10.1016/j.est.2024.111044.

Guo, Z.; Qian, G.; Wang, C.; Zhang, G.; Yin, R.; Liu, W.D.; Liu, R.; Chen, Y. (2023). Progress in electrode materials for the industrialization of sodium-ion batteries. Progress in Natural Science: Materials International, 33(1), 1-7. https://doi.org/10.1016/j.pnsc.2022.12.003.

Huang, T.; Xue, X.; Zhang, Y.; Miao, Y.; Xiao, B.; Qi, J.; Wei, F.; Sui, Y. (2024). A review of metal sulfide cathode materials for non-aqueous multivalent ion (Mg2+, Ca2+, Al3+) batteries. Journal of Energy Storage, 79, 110172. https://doi.org/10.1016/j.est.2023.110172.

Lakshmi, D.; Palaniyandy, N.; Bohm, S.; Mamba, B.B. (2023). Understanding the mechanisms of mixed-ion cathode materials for aqueous and non-aqueous lithium/sodium-ion batteries – A review. Current Opinion in Electrochemistry, 38, 101217. https://doi.org/10.1016/j.coelec.2023.101217.

Shu, C.; Yuan, S.; Bao, X.; Wang, X.; Cui, G.; Liu, X.; Yu, L.; Wang, G.; Yang, Q.; Ma, Z.F.; Liao, X.Z. (2024). A ZIF-8 modified Prussian blue cathode material for sodium-ion batteries with long cycling life and excellent storage stability. Electrochimica Acta, 481, 143930. https://doi.org/10.1016/j.electacta.2024.143930.

Chen, J.; Wei, L.; Mahmood, A.; Pei, Z.; Zhou, Z.; Chen, X.; Chen, Y. (2020). Prussian blue, its analogues and their derived materials for electrochemical energy storage and conversión. Energy Storage Materials, 25, 585-612. https://doi.org/10.1016/j.ensm.2019.09.024.

Tyagaraj, H.B.; Marje, S.J.; Ranjith, K.S.; Hwang, S.K.; Ghaferi, A.A.; Chodankar, N.R.; Huh, Y.S.; Han, Y.K. (2023). Sodium-ion batteries: Charge storage mechanisms and recent advancements in diglyme-based electrolytes. Journal of Energy Storage, 74, 109411. https://doi.org/10.1016/j.est.2023.109411.

Alvira, D.; Antorán, D.; Manyà, J.J. (2022). Plant-derived hard carbon as anode for sodium-ion batteries: A comprehensive review to guide interdisciplinary research. Chemical Engineering Journal, 447, 137468. https://doi.org/10.1016/j.cej.2022.137468.

Karuppasamy, K.; Lin, J.; Vikraman, D.; Hiremath, V.; Santhoshkumar, P.; Kim, H.S.; Alfantazi, A.; Maiyalagan, T.; Korvink, J.G.; Sharma, B. (2024). Towards greener energy storage: Brief insights into 3D-printed anode materials for sodium-ion batteries. Current Opinion in Electrochemistry, 45, 101482. https://doi.org/10.1016/j.coelec.2024.101482.

Mosallanejad, B.; Malek, S.S.; Ershadi, M.; Daryakenari, A.A.; Cao, Q.; Ajdari, F.B.; Ramakrishna, S. (2021). Cycling degradation and safety issues in sodium-ion batteries: Promises of electrolyte additives. Journal of Electroanalytical Chemistry, 895, 115505. https://doi.org/10.1016/j.jelechem.2021.115505.

Vignarooban, K.; Kushagra, R.; Elango, A.; Badami, P.; Mellander, B.E.; Xu, X.; Tucker, T.G.; Nam, C.; Kannan, A.M. (2016). Current trends and future challenges of electrolytes for sodium-ion batteries. International Journal of Hydrogen Energy, 41 (4), 2829-2846. https://doi.org/10.1016/j.ijhydene.2015.12.090.

Zhao, L.; Zhang, T.; Li, W.; Li, T.; Zhang, L.; Zhang, X.; Wang, Z. (2023). Engineering of Sodium-Ion Batteries: Opportunities and Challenges. Engineering, 24, 172-183. https://doi.org/10.1016/j.eng.2021.08.032.

Santamaría, C.; Morales, E.; Del Rio, C.; Herradón, B.; Amarilla, J.M. (2023). Studies on sodium-ion batteries: Searching for the proper combination of the cathode material, the electrolyte and the working voltage. The role of magnesium substitution in layered manganese-rich oxides, and pyrrolidinium ionic liquid. Electrochimica Acta, 439, 141654. https://doi.org/10.1016/j.electacta.2022.141654.

Descargas

Publicado

2024-12-02

Cómo citar

Zelada Romero, H. M., & Vázquez, C. (2024). Baterías de iones sodio: una alternativa competitiva a las de iones litio. Revista Argentina De ingeniería, 24, 52–58. Recuperado a partir de https://radi.org.ar/index.php/radi/article/view/14

Número

Sección

ARTÍCULOS